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1. Introduction

For a completely randomized block design with one observation per

cell, we express the observable random variables X. (i = 1,...,k;

a = 1. .. ,n) as

(1.1) X. k ~+ i 0i,=P ot+T i + ia T i = 0,

where p is the mean-effect, a. .... *Bn are the block effects (nuisance

parameters for the fixed effects model), Tl ... 2Tk are the treatment effects,

and Ei are the error components. We assume that the errors within each

block are jointly normally distributed.

We assume that the quality of a treatment is judged by the largeness of

the xi's. A 'population' ni is called the best if Ti is the largest. In general,

it may be complicated to derive suitable tests for appropriate hypotheses, in

which the experimenter may really be interested. We apply the subset selection

approach (using certain basic hypotheses) and thus obtain more appropriate infor-

mation regarding the treatments. A subset selection procedure is designed to

select a subset so as to include the best population. Selection of any

subset that contains the best is called a correct selection (CS).
kouqhly speaking, any two populations that are in the same selected subset,

will be considered as "equivalently good". If all populations are selected,

we claim that all treatments are homogeneous. In general, for achieving the

objective of the experimenter, one should establish a suitable set of basic

hypotheses. Depending on the objective one should proceed to consider different

*This research was supported by the Office of Naval Research contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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ways of formulating the basic hypotheses. In this paper, we discuss a

method based on subset selection rules for the purpose oF making a claim

of the type: Ti = T* > Tj + A for all i E I and j E J, where I and J form

a partition of 11,2,..., k}. The process of making such a claim will be

called hypothesis identification. This is achieved by setting up certain

basic hypotheses regarding the Ti's and using a subset selection procedure

to test these basic hypotheses. It should be pointed out that in identifying

an appropriate hypothesis, we assume that the constant A in the claim is

specified by the experimenter, say, based on past experience. Associated with

the tests of the basic hypotheses using a selection rule, there are error

probabilities and the infimum of the probability of a correct selection for

the rule employed. These are related to the power function of these tests.

The su' of the average (over the basic hypotheses tested) of the error

probabilities and one minus the infimum of the probability of a correct

selection is called the identification risk. The main theorem of the

paper discusses the derivation of an optimal selection rule in the sense of

minimizing the identification risk. For a more general theory of

multiple decisions from ranking and selection approach, one can refer to a

recent monograph by Gupta and Huang (1981). A general survey of the entire

field is provided in Gupta and Panchapakesan (1979).

Let Y be a random observable vector with probability distribution depending

upon a parameter T'
= (Tl,..., rk) E S?. Consider a family of hypotheses testing

problems as follows:

(1.2) H0: TE E20 vs Hi: T E Si' 1 < i < k,

where i0 = TIT, =...= Tk} and Qi = {IJT i > max Tj}, i = 1,2,...,k. A test
jsi

of the hypotheses (1.2) will be defined to be a vector (6l( ),... ,k( )),

where the elements of the vector are ordinary test functions; when y is observed
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we reject H0 in favor of Hi with probability 6i(y), 1 < i < k. The power

function of a test (61, .... 6k) is defined to be the vector (8l( ),... Bk(s)),

where i(r) = E ri(Y), 1 < i < k. For T E Qi, i(T ) is the probability of

a correct selection P(CS) and 6i(y) is the individual selection probability of

selecting the best population ti. Let S be the set of all the tests

(1.... ,6k) such that

(1.3) E 6i(Y) , y, E 20' 1 i k,

where y is the upper bound on the error probabilities assoc4ated with the

treatment effects.

For each i, (1 < i < k), we would like to have i(') large when r E ,i

subject to (1.3). For T E Qi' if we make ai(r) large, then a (T) should be

small for j i.

It should be pointed out that in the formulation and proof of the optimal

selection procedure, results from Neyman-Pearson theory are used.

2. Formulation of an Optimal Selection Procedure

Assume that

= (XI,...,Xka),

t= 1,..., n, are independently and identically distributed random vectors

with the following distribution:

(2.1) (2 1-exp[- -1 -(x 1e) - 0)],

2a
~~~where X' = (Xll, .... xk ;.;Xn .. , ) and B O l.. O l . . ~ ,.. k )

Si +  a+ ],...,k; a = 1,2,..., n and A is a known positive definite

kn x kn correlation matrix defined as follows: C t7
Wi

00
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i = knxkn

Al 0 ... 0

•o •w he re

0 0 ... AJ

A i
A1l kxk

71 We rewrite the original model as the general linear model as follows:

E - .N(O,a A).

Since we are interested in the difference between all pairs of Ti's, we

transform the linear model to the following: For any i, let

C i +  n, N( , 2

where T = (Til t - jT 
j  

is

- ill, . .ikl;.'; Yiln. ... jYikn)lx(k-I)n

Y = X - X i j; ij = 1,... ,k; x 1,...,n,

Yi= Ai X, = Ai E

A .

'Ail (k-l)nxkn
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t 'AilA I

1 1 A . . . . . . . . . .

0 -1 0 ..... 0 1 0 ............. 0

0 ......... 0 -1 1 0 ............. 0 i-

0 ............. 0 1 -1 0 ......... 0 i+l

0. 1 0 .0 -1 (k-1)xk

C' = [I,... ,](k-l)x(k-l)n

where each of the identity matrix in C' is (k-l)x(k-1).

The maximum likelihood estimator of Ti is as follows:

(C -°  ZC f10C-Ic' IE "

Since,

(A A! IA = V-i l ]

2~~ k kl- ~ kI

CAz IC n (A l ) -A 1  ". =- ]
k -In I 2 ( -) ~ - )

.~.. .
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=[V.,... Iv.]

(C'~~ E 01C EiI1A 21[i'"i

n
Hence,

i
4n

Y il.

j n
4 ~ ik -

n
where I xij I., < i < k.

The~ ~~~il'' jitdniyoYj1 .. 'iklP.. ;Yiln,... 'ikn is the following:

2 1Lk

Ti -1a iQ

where

=A. A A! 1x '~ 0

.1 0 J.j J (k-1)nx(k-l)n

J = [ 2  (k-I)x(k-1).

vi-
0~~~i



Now, we specify the Qi s as follows (Note that this is a different

specification from that given earlier):

i > max Tj + Av} 1 < i < k,

and
k

= U i"
i=1

Assume that o is known. Let

S= (a,...,Ao)ix(k~l), i =,...,k, A > 0.

Thus

-i 1 A.) Q- (i-CAi) + 'Z-l

i , &C,E-I C 60
= eXp1 A ACC1  1 AIcAi}.

exP{T-- k(Yil +'"+ Yik) - - ilc"i

Hence, we can rewrite

P i Qj)

--F > d' as

-

I
~~~Yil +' + Yik i do,

Let a selection rule 
0 (60,...,6 ) be defined by

I'" k

1 P if A(i) I d'Po(ji),ii
0 otherwise

such that

(2.2) E 6(Y.)= y, I E s0" Then

60 maximizes
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(2.3) inf P(CSj6)

among all selection rules 6 E S(y).

Note that 69(,i ) is also based on the maximum likelihood estimators

ti of Ti. Since for any 6 E S(y),
k

T E Q = U Qi implies T E Qi for some i, thus
i=I -

P(CS16) =f 6i (Y-)T -i)dv(yi)

> min inf f 6 i( i)PT( ~ )

l<i<k TEs .

We have

inf P(CS16) min inf f 6i( i)pT (i)dv(,i).TE l<i<k -EQ i

For any 6 E S(y), it follows that

f (6i-69)(P dp 0 ) < 0

which implies

f60 p >f66i Ai  iPAi

0Since 6 i(,i) is nondecreasing in Yi, hence

0 0
inf P(CS16 0)= min f i(i)PA (yi)d,(Qi)
TES l<i<k -"

> min f 6i(yi)P Q(i)dv( i )
l<i<k -"

> min inf f 6j(yi)pT(Yi)dv(yi)
-<i<k rEf i i _

: inf P(CS16).
OE

We rewrite 60 as follows:

1 if Yil +'"+ Yik >

0 otherwise
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Thus, the optimal subset selection rule is as follows:

Sif xj + do,

0x o otherwise

where d -

Now, we wish to determine d and n. We make the following transformation:

ik = [l...l]lx(kl) " , and
lYik

Til+...+- ik = (k-l) i  j i

Since the distribution of

ry , 1 - c  1 .
{*~ J (CIEjC)1 ' ly

, ik

is (2na 2 )-;k jzi-2exp[- 2 ( - Zi 'li(!i-i)], where Eli = J

Then the distribution of Zik is

[2 o2(l.-x)k(k-l) !]' exp[- n 2
2a (l-x)k(k-l) (Zik-t) 2]"

Hence

EO6(Y.) - P(Zik > d"o)

(2.4) d c[- d" i y,

and
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inf P (CS16 0

= min f a0= mn j6 0(yi)P' .(yi)dv(,Yi )

l<i<k -1

= min P (Zik > dla)

1<i1k -i

min (Zik-(k-l))- > (d"-(k-l)A)/n-)1<14 ik Pi /(l- X )k (k -i )-T (-x)k'(k-l)

(2.5) 41[- " ""-(k-l)A)rn ] : P*.

For given r, P*, k, A, and A, we can find d" and the smallest number of

blocks, n, to satisfy equations (2.4) and (2.5). Note that this n is

also the minimum sample size for the case of one observation per cell in

the completely randomized block design.

We rewrite (2.4) and (2.5) as

d -Y

and

[ (d-) n k-lj = .

Let zp* and z represent the upper percentage points corresponding to 1Y

P* and y, respectively of the standard normal distribution. Then we have

z A
d = - Y I

Zp* - Z '

and

(l-A)k(zp, - zy2

(k-I)A 
2

where <a> is the smallest integer greater than or equal to a.



Summarizing the previous results, we obtain the following theorem.

Theorem: Under model (1.1) with the stated assumption on E., an optimal

procedure for selecting a subset of the "best" or "worthwhile" treatments

based on the observed data x and satisfying the conditions (2.2)

and (2.3) is: Select the population 7i with probability 69(x)

given by

1 f xj + do,
6 (x) --

~0 otherwise

where the smallest values of d and n are given by

Z A
d -PZp - z

Y

and

< (l-x)k(zp. - z Y 2
n : (k-l), 2  .

Furthermore, we have established the following connection between the

s( lection procedure and the hypothesis identification problem as follows:

If i i . (j - k) are selected, we say that these populations are3
homogeneous and make the hypothesis identification

H: - Ti iI. > maxi k A

Note that thq overall identification risk connected with this problem is

Y + (l-P*).

Remark: It should be pointed out that for some pairs (y,P*), 60 may not select

any population. This is to be interpreted as not identifying an- one of the

appropriate hypotheses.

*. . . . . . . *.
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We consider somle special cases to provide an idea as to the appropriate

identification of one of the hypotheses. For y =0.05,A =0.5 and P* = 0.95,0.90,

0.80; then

(i) k = 2,

H 0: Ti1 T 2' Hj: 1i >- 2 + Ac, H T 2 >-l+ u

-~ In this case, for specified A-values, the smallest d and n needed for the

optimal selection rule are given in the following table.

A(.509008) 0. 0.5 1.0 2.

d(O950.0,080 005,.0,007 0.25,0.32,0.33 0.50,0.64,0.66 1. 0,12J3

n(0.95,0.90,0.80) 1089,858,620 44,35,25 11,9,7 3,3,2

(ii) k =3,

H0: Ti T 2 T 3$ Hi: -1 > max(T 2 T3) + Ac,

H : T2 > max(Tl 9T3 ) + Ac, H5 T~ 3 max(T,,T 2 ) + Ac,

H':T = T + Auc, H~: T 3 >T + Ac,
2' >T3 +3c2

6 : T 2 = T3 1 i+AY

For optimal selection rule, the minimum value of d and n are computed (for specified

values of A) and given in the following table.

A 0.1 1 0.5 1.0 J 2.0
d(0.95,0.90,0.80) j0.05,0.06,0.07 10.25,0.32,0.33 0.50,0.64,0.66 11.00,1.29,1.33
n(0.95,0.90,O.80) 817,644,465 33,26,19 9,7,5 3,2,2

(iii) k =4,

H0: T 1 T2 T 3 T4 Hj: T 1 > max (T2 .T 3 1T4) + Ac,
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H : T2 > max(T ,T 3 ,T 4 ) + ,,a, H: 13 max(-[1t 2 4 ) + bo,

H4 : T4 max(1 I[ 2 'T 3 ) + A, H: 11 =  2 ,max(i 3 , 4 ) + 0,

H: T1  3 
-- ma x(r 2 ,1 4 ) + o, H I: i =  4 a nax(m2,r 3 ) + AcJ,

H : T2 
= T 3 > max( 1,r 4) +A, H6: '2 = t4 max( I, 13 ) + O

HI0 : T3 = 14 > max(Il'r 2) + .s, Hil: I = 2 =  3 '4 +

H 2 : 1 = = T4 > T3 + L) , H' 3: T 
=  3 = 1 1 

+ "

HI4: T2 = T3 = '4 > Tl 
+ Ao.

For the optimal selection rule, the minimum value of d and n are computed

(for specified values of A) and given in the following table.

A 0.1 0. .0- 2.0 2
d(0.95,0.90,0.80) 0.05,0.06,0.07 0.25, 0.32, QA33 0.50,0.64,0.66 1.00,1.29,1.

n(0.95,0.90,0.80) 726,572,413 30,23,17 . 8,65 2,2,2

Note that P* is the probability of correct selection for the associated subset

selection rule, while the error probability y is controlled at 5 percent level. The

identification risk is 0.05 + (I-P*). We can explain the cases described above as

follows: for k = 2, if the selected subset contains 7. only, we identify

HI, i = 1,2; if it contains 7I and n2 ' we identify H0. For k = 3, if the

selected subset contains i only, we identify Hi, i 1,2,3; if it contains

7T and 2, l and T3 or i2 and .3 only, we identify H , H or H , respectively.

Similar discussion applies to the case k 4.
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Now, we discuss the case where a is unknown. For any i, the maximum

likelihood estimators of Ti and a2 are:

1i = (C'IE -i c l 1
Yik

and

a 2 1 Y! [Z1  - ic(c'i 1  c)-1C'I1 ] Yi
(k-l)(n-l) -1i L 1 1 -1

We know that 2 andi are independent and the distribution f(s) of s

is /X!(s) with p= (k-1)(n-l).
I

As before, we define the selection rule as follows:

I

1 if Yil +'-+ Yik > di;'

otherwise

or

1 if > 1 j + kT
j~i

0 otherwise

Conditionally, for an observed value of a, we can discuss the optimality

as before. However, the constant d and n can be determined without any

difficulty by (2.8) and (2.9). Since

E i(i' 5) y, T E 0
T g

we get



15

(2.6) d I s'(-xkr -T f(s)ds

and inf P( CSIcp0

(2.7 = f~4-(d s-(k-1)A)/r{

This gives

d1 /nTn7
* (2.8) t1- -;(k-1)(n-l),O]

and

(2.9) t1- ;(k- 1)(n-l) 1 n-i =

where t(a; b, c) is the percentage point of the noncentral t with b degrees

of freedom and the noncentrality parameter C.
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